Логотип Автор24реферат
Заказать работу
Реферат на тему: Магнитные стали и сплавы
63%
Уникальность
Аа
25042 символов
Категория
Материаловедение
Реферат

Магнитные стали и сплавы

Магнитные стали и сплавы .doc

Зарегистрируйся в два клика и получи неограниченный доступ к материалам,а также промокод Эмоджи на новый заказ в Автор24. Это бесплатно.

Введение

Возможности ускорения научно-технического прогресса во многом зависят от рационального использования, улучшения качества уже существующих материалов и создания принципиально новых материалов, отвечающих требованиям новых поколений высокоэффективной техники.
Сталь является одним из наиболее востребованных материалов металлопроката. Она используется в промышленной, транспортной и строительной отраслях народного хозяйства. В зависимости от свойств, которым обладает этот материал, он разделяется на подкатегории.
Магнитная сталь представляет собой, не прошедший термообработку, сплав железа с углеродом, наделённый специальными магнитными свойствами, которые ему придают добавки кобальта и хрома. В нашей стране она изготавливается по ГОСТу 3836-80. Свое применение этот особый материал нашел в изготовлении магнитопроводов, сердечников трансформаторов, электромагнитов и некоторых электроизмерительных приборов.
Особую группу составляют сплавы с высокой начальной магнитной проницаемостью, которые должны интенсивно намагничиваться в слабых полях. Без преувеличения можно сказать, что в настоящее время нет почти ни одной отрасли промышленности, ни одного научного и технического направления, где бы не применялись, в том или ином качестве стали и сплавы.
Промышленные предприятия нашей страны выпускают более 200 марок сталей и сплавов, отличающихся по химическому составу, способам выплавки и методам оптимизации заданных физических свойств, уровню служебных характеристик, сочетанию основного («ведущего») физического свойства с другими свойствами — физическими, механическими, химическими.

Свойства магнитной стали

Основным свойством этого вида стали является ферромагнитизм – так называется способность привлекать магнитные силовые линии, которую обеспечивает магнитопроницаемость. Она у магнитной стали достигает нескольких сотен тысяч, в то время как у обычного металла она чуть выше 1.
В зависимости от вида этого магнитного материала, другие его специальные свойства будут характеризоваться следующими показателями: магнитным потоком; напряженностью магнитного поля; магнитной индукцией.
Магнитные свойства стали определяются путем построения петли гистерезиса – графической кривой, выражающей зависимости между напряженностью магнитного поля и магнитной индукцией. Это необходимо для вычисления величина переменного магнитного поля, которое провоцирует возникновение в магнитной стали вихревых токов. А они, в свою очередь, нагревая магнитопроводы, приводят к потерям мощности. Именно поэтому все виды этого материала характеризуются показателями удельной потери.
Из всех металлов только Fe, Co, Ni обладают ферромагнетизмом - способностью сильно намагничиваться во внешнем магнитном поле.
Основными характеристиками магнитных сталей и сплавов являются остаточная индукция В(гаусс), коэрцитивная сила Н (эрстед), магнитная проницаемость μ, имеющие между собой такую зависимость:

μ = В / Н

Остаточная индукция (Вг) в гс, т. е. индукция, сохраняющаяся в образце после его намагничивания и снятия намагничивающего поля. Практически остаточная индукция является той полезной величиной, которую стремятся сохранить в постоянном магните после его намагничивания.
Коэрцитивная сила (Не), т. е. напряженность поля в эрстедах, которая должна быть приложена к образцу в обратном направлении, чтобы сделать его остаточную индукцию равной нулю, т. е. его размагнитить.
Магнитная проницаемость. Величина магнитной проницаемости у так называемых немагнитных металлов (Си, Pb, А1 и др.) близка к единице, у железа, никеля и кобальта, представляющих ферромагнитные металлы, достигает значений порядка нескольких тысяч.
В зависимости от Н они могут быть: магнитомягкие и магнитотвердые.
Зависимости величин коэрцитивной силы Hc и остаточной индукции Br, измеренных по предельной петле магнитного гистерезиса, а также максимальной магнитной проницаемостиμмакс, определенной по начальной кривой намагничивания, от нормальных напряжений сжатия и растяжения σ показаны на рис.1 (а,б,в) Эти зависимости можно представить как результат формирования магнитной текстуры напряжений, получившей также название наведенной магнитной анизотропии. При увеличении упругих напряжений сжатия происходит возрастание величины коэрцитивной силы и уменьшение значений остаточной индукции и максимальной магнитной проницаемости. При возрастании одноосных растягивающих напряжений коэрцитивная сила уменьшается, остаточная индукция и магнитная проницаемость увеличиваются. Таким образом, наблюдается отрицательный магнитоупругий эффект (σλs < 0, λs – магнитострикция насыщения), что вполне характерно для сплавов на основе железа.
На рисунке 1 (г,д,е) приведены магнитные характеристики исследованной стали в зависимости от касательных напряжений τ. Характер зависимостей коэрцитивной силы и максимальной магнитной проницаемости от касательных напряжений аналогичен зависимостям от нормальных напряжений: с возрастанием касательных напряжений коэрцитивная сила уменьшается, максимальная магнитная проницаемость увеличивается. Характерная особенность заключается в том, что влияние касательных напряжений на остаточную индукцию не превосходит погрешность измерений.

Рисунок 1 - Зависимости магнитных характеристик от нормальных и касательных напряжений


Магнитомягкие стали

 Магнитомягкие стали и сплавы (рис. 2) имеют малую коэрцитивную силу Н и большую магнитную проницаемость μ (трансформаторная сталь – Э3, Э4, динамная сталь – Э1, Э2).

Рисунок 2 -  Магнитомягкие стали и сплавы
Магнитно-мягкие материалы, можно разделить на три группы: электротехнические стали, сплавы на основе железа с другими металлами (никель, кобальт, алюминий) и ферриты (неметаллические ферромагнетики).
Электротехнические стали наиболее дешевые материалы, имеющие большие индукции насыщения (порядка 1,8 … 2,3 Тл), и это позволяет создавать из них компактные и дешевые электромагнитные элементы. Но из-за относительно большой (по сравнению с железоникелевых сплавами) коэрцитивная силу электротехнической стали (порядка 0,1 ¸ 0,5 А / см) чувствительность стальных элементов к изменениям внешнего поля, которое образуется обмотками, невелика.
Техническое железо или по ГОСТ 3836-47 сталь низкоуглеродистая электротехническая тонколистовая (Э, ЭА, ЭАА) содержит не более 0,04% углерода, μ = 3500-4500 гс/э; Н = 1,2-0,8 э. Недостатки: низкое электросопротивление и большие потери на вихревые токи

Зарегистрируйся, чтобы продолжить изучение работы

. Применяется для изготовления сердечников, полюсных наконечников электромагнитов и т.д.
Электротехническая сталь (ГОСТ 802-58) содержит большое количество кремния, растворенного в феррите, которая увеличивает электросопротивление, уменьшает потери на вихревые токи: μ = 6000-8000 гс/э; Н = 0,6-0,4 э. Высокие магнитные свойства имеет сталь с крупным зерном, которые располагаются вдоль листа. Для этого выплавляют сталь с содержанием углерода С < 0,05%, прокатывают в горячем состоянии, отжигают при температуре Т= 800-850 0С, прокатывают в холодном состоянии (наклеп) со значительной степенью деформации и отжигают при высокой температуре (1000-1200 0С) для получения крупного зерна. Электротехническую горячекатаную сталь делят на 4 группы:
Слаболегированная (0,8-1,8 %Si) – Э11, Э12, Э13.
Среднелегированная (1,8-2,8 %Si) – Э21, Э22.
Повышеннолегированная (2,8-3,8 %Si) – Э31, Э32.
Высоколегированная (3,8-4,8 %Si) – Э41-Э48.
Буква Э обозначает "электротехническая сталь", а цифра – содержание кремния в %.
Железоникелевые сплавы (пермаллои) содержат 45-80 % Ni. Наиболее высокие магнитные свойства имеет пермаллой 79НМА (79% Ni). После специальной термообработки (высокотемпературный отжиг при температуре Т= 1100-1200 0С в атмосфере водорода с медленным охлаждением в магнитном поле) сплав имеет μ = 50000 гс/э и μmax = 300000 гс/э. Их применяют в телефонах, радио и т.п.
Магнитомягкие стали (электротехническая сталь). (1212, 1311, 1511, 2011, 2013, 2211, 2312, 2412, 3415, 3416, 79НМ, 81НМА) применяют для изготовления магнитопроводов постоянного и переменного тока. Они предназначены для изготовления якорей и полюсов машин постоянного тока, роторов и статоров асинхронных двигателей и др.
Парамагнитные стали (17Х18Н9, 12Х18Н10Т, 55Г9Н9Х3, 40Г14Н9Ф2, 40Х14Н9Х3ЮФ2 и др.) требуются в электротехнике, приборостроении, судостроении и специальных областях техники. Недостаток этих сталей – низкий предел текучести (150-350 Мпа), что затрудняет их использование для высоконагруженных деталей машин.
Ферриты — это неметаллические магнитные материалы (твердые растворы), изготовленные из смеси оксидов железа с оксидами магния, меди, марганца, никеля и других металлов. Общая формула ферритов имеет вид МеO × Fе2 Оз, где Me — любой металл.
Оксиды измельчают на маленькие куски и смешивают в определенной пропорции. Магнитопроводы необходимых размеров и конфигураций прессуют из полученной смеси при давлении 10-30 кН / см 2 (1-3 т / см 2) и выжигают при температуре 1200-1400 ° С. Готовые магнитопроводы серо-черного цвета имеют высокую твердость, но довольно хрупкие. Обмотки обычно наматывают без непосредственно на ферритовые магнитопроводы без дополнительной изоляции последних. Удельныйэлектрическое сопротивление ферритов в миллионы раз больше чем у металлических ферромагнетиков, что практически устраняет вихревые токи. Это позволяет перемагничиные ферриты с частотой в сотни килогерц и обеспечивать высокую скорость выполнения операций современных управляющих и вычислительных машин. Наиболее распространенные магниево-марганцевые ферриты марок ВТ (1.3ВТ, 0,16 ВТ и др.).. Они имеют относительно низкую точку Кюри (140 — 300 ° С), что обусловливает значительную изменение их магнитных параметров при нагревании. Ферриты на базе лития, с точкой Кюри 630 °С, имеют значительно лучшие температурные характеристики. Для магнитопроводов цифровых устройств широко применяют бифериты, есть ферриты с двумя металлами, например магниево-марганцевые или литий-натриевые ферриты, а также полифериты, которые являются твердыми растворами трех и более ферритов.


Магнитотвердые стали и сплавы

Магнитотвердые стали и сплавы применяют для изготовления постоянных магнитов.
Для постоянных магнитов применяют высокоуглеродистые стали с 1% C, легированные хромом (3%) EX3, а также одновременно хромом и кобальтом, EX5K5, EX9K15M2. Легирующие элементы повышают коэрцитивную и магнитную энергию. В промышленности наиболее широко применяют сплавы типа алнико. Сплавы тверды, хрупки и не поддаются деформации, поэтому магниты из них изготавливают литьем, затем проводят шлифование. Сплав ЮНДК15 содержит 18-19% Ni, 8.5-9.5% Al, 14-15% Co, 3-4% Cu. Термообработка магнитотвердых сталей и сплавов заключается в нормализации от температуры Т = 1050-1200 0С для растворения крупных карбидов, закалке в масле от температуры Т = 850-1050 0С, старению в течение 15-20ч для стабилизации магнитных свойств. Углеродистые стали У10-У12 после закалки на небольшую глубину применяются для изготовления магнитов сечением 4-7 мм. Хромистые стали прокаливают значительно больше и из них изготавливают более крупные магниты, которые маркируются ЕХ, ЕХ3, Е7В6, ЕХ5К5, ЕХ9К15М и т.д.). Хромокобальтовые стали имеют более высокие магнитные свойства.
Магнитно-твердые материалы. Магнитно-твердые материалы, как уже отмечалось, применяют:
— для изготовления постоянных магнитов;
— для записи информации (например, для звукозаписи).
При оценке свойств магнитно-твердых материалов могут оказаться существенными механические свойства (прочность), обрабатываемость материала в процессе производства, а также плотность, удельное электрическое сопротивление, стоимость и др.. Особенно важно в некоторых случаях вопрос стабильности магнитных свойств.
Важнейшими материалами для постоянных магнитов являются сплавы Fe-Ni-Al. Большую роль в образовании высококоэрцитивной состояния этих сплавов играет механизм дисперсионного твердения.
Такие материалы имеют большое значение коэрцитивной силы, потому что их намагничивания происходит в основном за счет процессов вращения.
Сплавы Fe-Ni-Al без легирующих элементов не применяют из-за их сравнительно низкие магнитные свойства. Наиболее распространенными являются сплавы, легированные медью и кобальтом. Висококобальтови сплавы, содержащие более 15% Co, как правило, используют с магнитной или с магнитной и кристаллической текстурой.
Магнитная текстура является результатом термомагнитного обработки, которая заключается в охлаждении в магнитном поле напряженностью 160-280 кА / м сплава от высоких температур (1250-1300 0 С) до примерно 500 0 С. При этом рост магнитных характеристик происходит только в направлении действия поля, т.е

50% реферата недоступно для прочтения

Закажи написание реферата по выбранной теме всего за пару кликов. Персональная работа в кратчайшее время!

Промокод действует 7 дней 🔥
Оставляя свои контактные данные и нажимая «Заказать работу», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Магазин работ

Посмотреть все
Посмотреть все
Больше рефератов по материаловедению:

Теория листовой штамповки в автостроителе

18349 символов
Материаловедение
Реферат
Уникальность

Полимерцементные композиции

31147 символов
Материаловедение
Реферат
Уникальность

Истории развития современных материалов

38440 символов
Материаловедение
Реферат
Уникальность
Все Рефераты по материаловедению
Закажи реферат
Оставляя свои контактные данные и нажимая «Узнать стоимость», я соглашаюсь пройти процедуру регистрации на Платформе, принимаю условия Пользовательского соглашения и Политики конфиденциальности в целях заключения соглашения.

Наш проект является банком работ по всем школьным и студенческим предметам. Если вы не хотите тратить время на написание работ по ненужным предметам или ищете шаблон для своей работы — он есть у нас.